

Centre of Excellence on Technologies for Low-Carbon and Lean Construction

K RAMAMURTHY

RAVINDRA GETTU

MANU SANTHANAM

KEERTHANA KIRUPAKARAN

KOSHY VARGHESE

BENNY RAPHAEL

ASLAM KUNHI MOHAMED

ARITRA PAL

RADHAKRISHNA PILLAI

PIYUSH

SURENDER SINGH

ASHWIN MAHALINGAM

SIVAKUMAR PALANIAPPAN

NIKHIL

MURALI JAGANNATHAN

Overview

01

Our Vision

02

Our Mission

03

Our Projects

04

Our Collaborators 05

Start up mentoring 06

Future plans

Our Vision

- ✓ Zero-Carbon & Zero-Waste Construction
- ✓ Reducing embodied CO₂ emission

Our Mission

Recycle and Reuse
Material Wastes

Minimize Process Waste

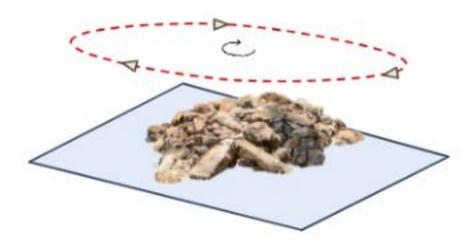
Sustainable Construction

Technology
Innovation & automation in construction

Promotion of entrepreneurs hip through mentoring Tech Transfer through industry partnership

Test-Bed implementation solutions

Dissemination of Knowledge

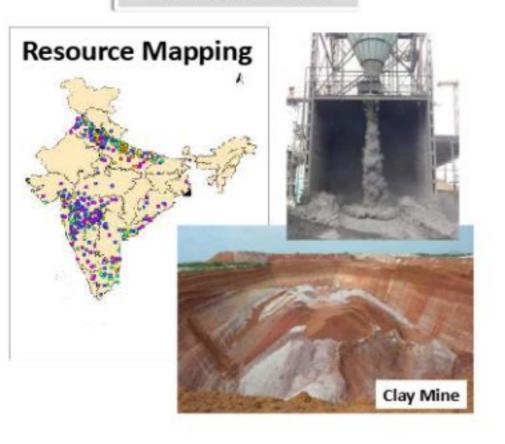

Pioneering

Use of recycled materials

Digitized Quantification

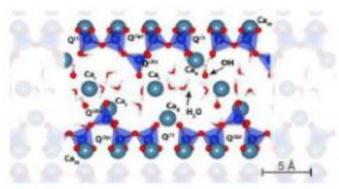
Intelligent Segregation

Sustainable Processing

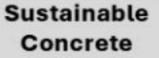


Recycled Aggregates

Zero emission concrete


Alternative **Raw Materials**

Cements



- Low-Grade Limestone
- Biomass
- Overburden Clay

Low-carbon

- Mini cement plant
- Low Energy Cement
- Molecular Modelling

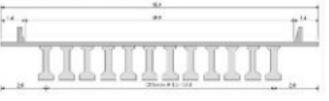
- LC3 house
- LC3 Tetrapod
- Biomass Ash bricks 6

Precast construction

Technology Development

- Tendonfill grout
- TRC Sewage treatment plant
- FRC tunnel linings

Promotion and Implementation



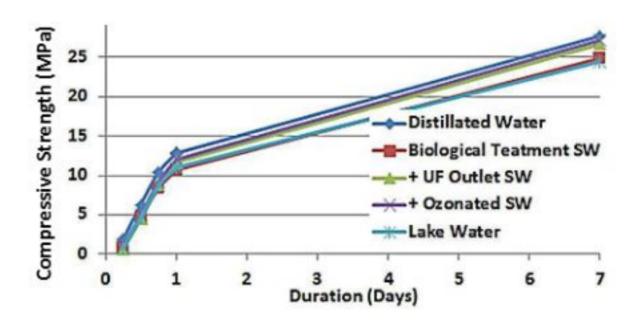
- Completed sports complex
- Upcoming PPVC hostel, designed for deconstruction

Standardization

Bridge sector

BIS standard

Wastewater recycling

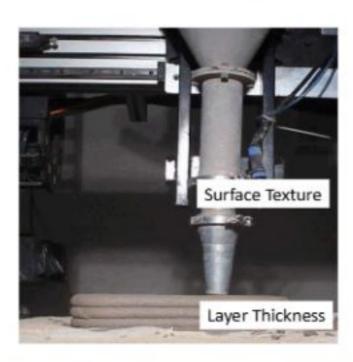

Source Water Characterization

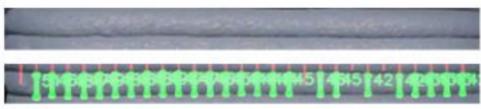
Chloride content of water used for concrete in different regions

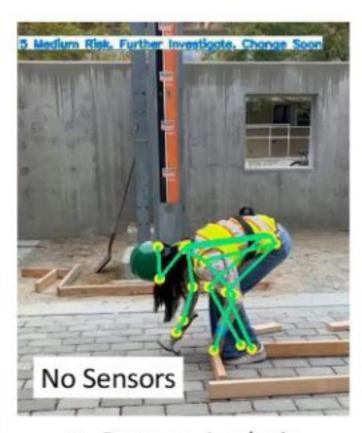
Concrete with Treated Wastewater

- BIS standard
- Policy to allow non-potable water (with clear guidelines) in construction

Quality and Safety

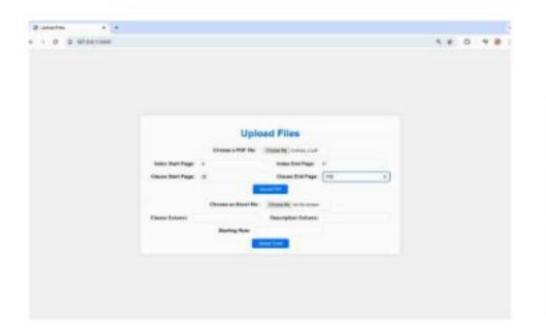



Virtual Reality Training

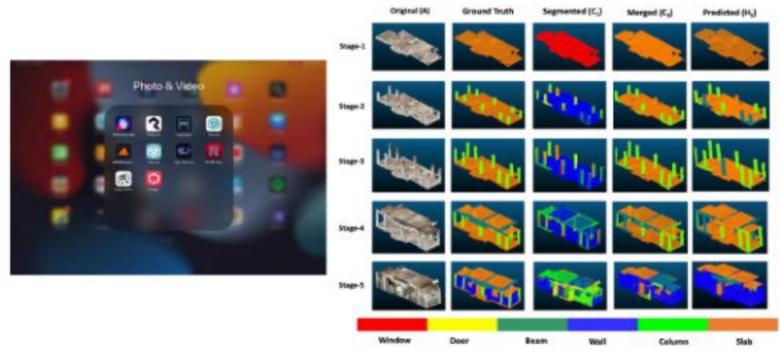

VR training for workers for Quality

Al-based Risk Assessment

Early Prediction of Failure



Posture Analysis


Contract Management

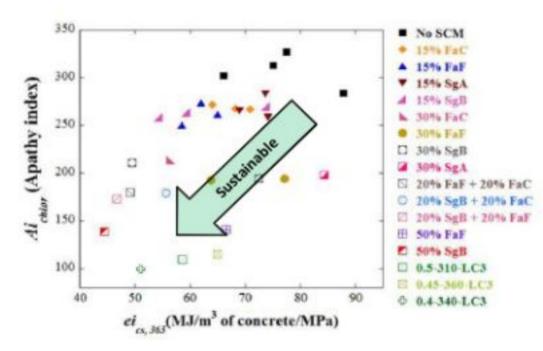
Al-based Contract Risk Assessment

Al-based Contractual Progress Monitoring

- Cross-Referencing Implicit Clauses
- Contract clauses and their risk potential

Stage-wise progress detection

Life Cycle Assessment (LCA)



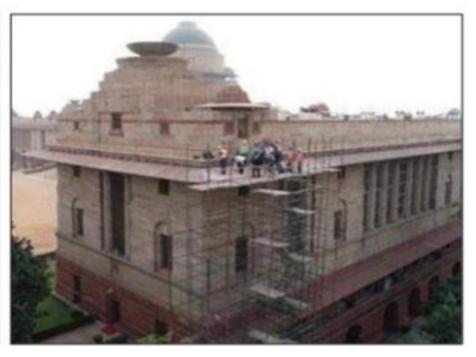
Cement

Low-carbon materials 1000 Clinker CO, emissions Direct emissions form ilmessors CO, emissions (kg CO, tonne) Fossi fuels textraction + heating) 30% Reduction 400 Pet coke (estruction + heating) (kg co. A terrate funds (nesting) ranspertation OPC PPC PSC LC3 Clinkerization Electricity Transportation Others Glay calcination

Process mapping of cement manufacturing

Concrete Mixes

Framework for sustainable concrete design


- Strength and Workability
- Durability

Technology Translation

M40-D1.5 M40

Concrete foundation (1000-year design life) Ayodhya

125 years service life Coastal Bridge, Kollam, Kerala

Durable repair (50-year life extension) Rashtrapati Bhawan, New Delhi

Low-carbon materials

Technology Translation

Lean project delivery for Godrej Constructions, Mumbai

(3D concrete printing)

IIT Madras, Chennai

Our collaborators - Industry

Our collaborators - Academic

North America:

Massachusetts Institute of Technology

Oregon State University

Texas State University

Clemson University

Michigan State University

Stanford University

Univ. of Texas at Arlington

Univ. of Toronto

Virginia Tech Univ.

Arizona State Univ.

South America:

Universidad Nacional de La Plata (Argentina)

Univ. Federal de Rio de Janeiro (Brazil)

- Univ. of Cape Town
- Univ. of Witwatersrand

Australia:

- University of New South Wales
- Curtin University

UK & Europe:

- University of Leeds
- Norwegian University of Science and Technology
- **Brunel University**
- Karlsruhe Institute of Technology, Germany
- Politechnico di Milano, Italy

Asia:

- Hong Kong Polytechnic University (China)
- National University of Singapore
- IIT Bombay
- IIT Roorkee
- IIT Kanpur
- IIT Tirupati
- NIT Calicut
- MACE, Kerala

Start-ups mentored by TLC2

Satiq Concrete Manufacturers

Market development & strategy advisory

Structural Forensics and Conservation

Recycling of C&D waste

Handmade Cement Mortar Tiles with Waste Carbon

MALBA PROJECT

Policy on Waste Management

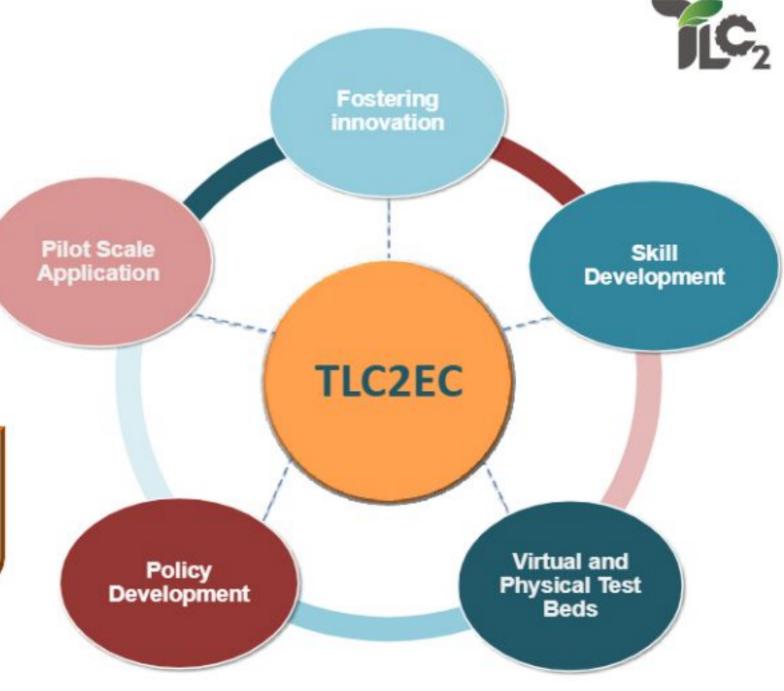
Prefabricated Volumetric Construction

TLC2 - New projects since 2022

Project Title	Sponsoring agency	Duration	Sanctioned Budget
Affordable Sustainable Housing Accelerator – 3D printing in construction	Ministry of Housing and Urban Affairs	22-24	6.23 crore
Sustainable concrete pavements using high volumes of construction, demolition, and industrial wastes as constituent replacements.	Indo-German Science and Technology Centre	24-27	2.03 Crore
Piloting A Multi-Attribute Urban Sensing Technology for Sustainable Cities: Assessing Urban Metabolism, Form, Activities and Emissions at Fine Scales	NSF-MeitY	24-26	2.44 Crore* (Final budget negotiation)
A LIDAR scanning integrated with GIS technology to optimize the Construction and Demolition waste supply chain for urban areas in India	Ministry of Education	23-26	75 Lakhs
Elucidating the Role of Mineralogy, Aggregate-Mortar Bonding, and Comminution Mechanism on the Quality of Recycled Concrete Aggregates for Rigid Pavement Applications	SERB-DST	24-27	46 Lakhs
Sustainable concrete pavements using high volumes of construction, demolition, and industrial wastes as constituent replacements.	Kerala Highway Research Institute	22-24	36.85 Lakhs
Electrical and electrochemical modelling for routine, non-destructive testing of cathodic protection systems in reinforced concrete structures	SERB-DST	23-26	37 Lakhs
A Novel Framework for High Volume Utilization of Biomass Ash in Structural Materials	SERB	24-26	35 Lakhs

TLC2 –Industry Projects since 2022

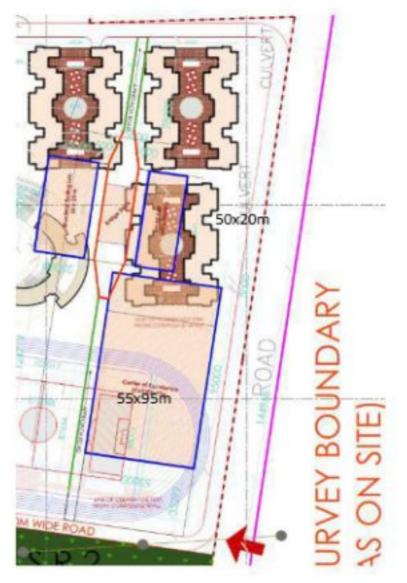
Project Title	Sponsoring agency	Duration	Sanctioned Budget
CO2 Sequestration in Concrete with Supplementary Cementitious Materials	Reliance India	23-24	50 Lakhs
Use of foundry Sand in Pavement Applications	Yuken India	23-24	6.35 Lakhs


TLC₂ Future Plans

TLC2 Experience Centre (TLC2EC)

IITM Discovery Campus Thaiyur, Chennai

Strengthen academia-industry relationship


- · Scaling up
- Demonstration Projects
- Training and capacity building

Tentative Master plan of Thaiyur campus

Elements of the TLC2EC

S.No	Details	Budget Estimate (Crore Rupees)
1	Built-up Facilities (Building, MEP, Smart systems)	25
2	Full-Scale Solar-Energy-Based Waste Beneficiation Plant	5
3	Physical Test Bed	25
4	Smart Classroom, Virtual Test Bed, and LCA Lab	15
5	Opex (Maintenance of Assets, Staff Salaries, Operations of Training Programs) for 5 Years	25
6	Contingency	5
	Total	100

Elements of the TLC2EC - Details

Elements of the Physical Test Bed

- A. Pilot Plant for Solar-Enabled Thermal Treatment for Recycled Concrete Aggregates
- B. Testbed on Aggregates
- C. Testbed on cement production
- D. Sophisticated Instruments Lab, Mechanical and Durability Lab
- E. Integrated mini batching plant with 3D printing facilities

Smart Classroom - The experience center will host a state-of-the-art 80-seater smart classroom to enable a great learning environment for training sessions.

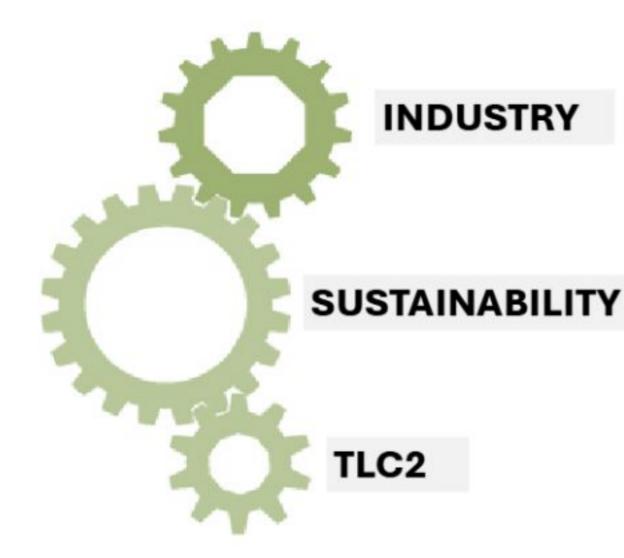
Virtual Test Bed

- A. Construction Process Visualization and Optimization Lab
- B. LCA Lab
- C. Policy and Contract Management Lab

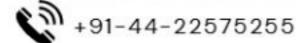
Co-Working Space for Start Ups -

Providing a boost to deep-tech startups in the area of sustainable building technology, the experience center will host a co-working space for start-ups and run a mentorship program where selected start-ups can use the research facilities for quick development of their products

TLC2 Industry Consortium


SCC – Sustainable Construction Consortium

- Membership at 3 levels Platinum (25), Gold (15) and Silver (5) (Figures in lakh per year for 3 years)
- Utilization of fee towards:
- Salaries of research staff who will drive this partnership
- Funding of projects related to TLC2 areas
- Maintenance of equipment so that it is constantly available for the projects
- Partial funding of internally organized events
- Benefits to the industry:
- Get to define the type of research undertaken objective is to solve the common current problems, and also innovations for the future; get to be part of RAB
- Access to a large pool of researchers at IITM and other Indian institutions through IITM network; availability of students from these institutions for internships and placement
- Two-way interaction of scientific personnel
- Exclusive workshops / seminars for the industry member
- Discounted registration to all TLC2 events and certification programs
- (More as we evolve)


Benefits of collaboration

Connect with us

https://tlc2.iitm.ac.in/

Carbon footprint
RecycleBuilding Construction Sustaines
Contracts AutomationTechnology
Safety Precast concrete Concrete Contracts
Safety Technology Concrete Concrete
Safety Technology Contracts
Carbon Contracts
Carbon Contracts
Carbon Contracts
Carbon Contracts
Carbon Frecast concrete
Carbon Footprint
Recycle Waste Management
Recycle Construction
Recycle Construction
Carbon Footprint
Recycle Construction
Carbon Contracts
Carbon Contracts
Carbon Construction
Carb

Waste Management
Precast concrete
Automation Quality admy
Including Concrete
Technology
Contractor
Contractor